The Committee on Data for Science and Technology (CODATA) has conducted a project to establish internationally agreed values for the thermodynamic properties of key chemical substances. This table presents the final results of the project. Use of these recommended, internally consistent values is encouraged in the analysis of thermodynamic measurements, data reduction, and preparation of other thermodynamic tables. The table includes the standard enthalpy of formation at 298.15 K, the entropy at 298.15 K, and the quantity $H^\circ(298.15\text{ K}) - H^\circ(0)$. A value of 0 in the DfH° column for an element indicates the reference state for that element. The standard state pressure is 100000 Pa (1 bar). See the reference for information on the dependence of gas-phase entropy on the choice of standard state pressure. Substances are listed in alphabetical order of their chemical formulas when written in the most common form.

<table>
<thead>
<tr>
<th>Substance</th>
<th>State</th>
<th>DfH°(298.15K)</th>
<th>S°(298.15K)</th>
<th>H°(298.15K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>cr</td>
<td>0</td>
<td>42.55±0.20</td>
<td>5.745±0.00</td>
</tr>
<tr>
<td>Ag</td>
<td>g</td>
<td>284.9±0.8</td>
<td>172.997±0.004</td>
<td>6.197±0.00</td>
</tr>
<tr>
<td>Ag+</td>
<td>aq</td>
<td>105.79±0.08</td>
<td>73.45±0.40</td>
<td></td>
</tr>
<tr>
<td>AgCl</td>
<td>cr</td>
<td>-127.01±0.05</td>
<td>96.25±0.20</td>
<td>12.033±0.00</td>
</tr>
<tr>
<td>Al</td>
<td>cr</td>
<td>0</td>
<td>28.30±0.10</td>
<td>4.540±0.00</td>
</tr>
<tr>
<td>Al</td>
<td>g</td>
<td>330.0±4.0</td>
<td>164.554±0.004</td>
<td>6.919±0.00</td>
</tr>
<tr>
<td>Al+3</td>
<td>aq</td>
<td>-538.4±1.5</td>
<td>-325±10</td>
<td></td>
</tr>
<tr>
<td>AlF3</td>
<td>cr</td>
<td>-1510.4±1.3</td>
<td>66.5±0.5</td>
<td>11.62±0.00</td>
</tr>
<tr>
<td>Al2O3</td>
<td>cr,corundum</td>
<td>-1675.7±1.3</td>
<td>50.92±0.10</td>
<td>10.016±0.00</td>
</tr>
<tr>
<td>Ar</td>
<td>g</td>
<td>0</td>
<td>154.846±0.003</td>
<td>6.197±0.00</td>
</tr>
<tr>
<td>B</td>
<td>cr,rhombic</td>
<td>0</td>
<td>5.90±0.08</td>
<td>1.222±0.00</td>
</tr>
<tr>
<td>B</td>
<td>g</td>
<td>565±5</td>
<td>153.436±0.015</td>
<td>6.316±0.00</td>
</tr>
<tr>
<td>BF3</td>
<td>g</td>
<td>-1136.0±0.8</td>
<td>254.42±0.20</td>
<td>11.650±0.00</td>
</tr>
<tr>
<td>B2O3</td>
<td>cr</td>
<td>-1273.5±1.4</td>
<td>53.97±0.30</td>
<td>9.301±0.00</td>
</tr>
<tr>
<td>Be</td>
<td>cr</td>
<td>0</td>
<td>9.50±0.08</td>
<td>1.950±0.00</td>
</tr>
<tr>
<td>Be</td>
<td>g</td>
<td>324±5</td>
<td>136.275±0.003</td>
<td>6.197±0.00</td>
</tr>
<tr>
<td>BeO</td>
<td>cr</td>
<td>-609.4±2.5</td>
<td>13.77±0.04</td>
<td>2.837±0.00</td>
</tr>
<tr>
<td>Br</td>
<td>g</td>
<td>111.87±0.12</td>
<td>175.518±0.004</td>
<td>6.197±0.00</td>
</tr>
<tr>
<td>Br-</td>
<td>aq</td>
<td>-121.41±0.15</td>
<td>82.55±0.20</td>
<td></td>
</tr>
<tr>
<td>Br2</td>
<td>l</td>
<td>0</td>
<td>152.21±0.30</td>
<td>24.52±0.00</td>
</tr>
<tr>
<td>Br2</td>
<td>g</td>
<td>30.91±0.11</td>
<td>245.468±0.005</td>
<td>9.725±0.00</td>
</tr>
<tr>
<td>C</td>
<td>cr,graphite</td>
<td>0</td>
<td>5.74±0.10</td>
<td>1.050±0.00</td>
</tr>
<tr>
<td>C</td>
<td>g</td>
<td>716.68±0.45</td>
<td>158.100±0.003</td>
<td>6.536±0.00</td>
</tr>
<tr>
<td>CO</td>
<td>g</td>
<td>-110.53±0.17</td>
<td>197.660±0.004</td>
<td>8.671±0.00</td>
</tr>
<tr>
<td>CO2</td>
<td>g</td>
<td>-393.51±0.13</td>
<td>213.785±0.010</td>
<td>9.365±0.00</td>
</tr>
<tr>
<td>CO2</td>
<td>aq,undissoc.</td>
<td>-413.26±0.20</td>
<td>119.36±0.60</td>
<td></td>
</tr>
<tr>
<td>CO3-2</td>
<td>aq</td>
<td>-675.23±0.25</td>
<td>-50.0±1.0</td>
<td></td>
</tr>
<tr>
<td>Element</td>
<td>State</td>
<td>Substance</td>
<td>Standard Enthalpy (kJ/mol)</td>
<td>Standard Free Energy (kJ/mol)</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-----------</td>
<td>---------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Ca</td>
<td>cr</td>
<td>0</td>
<td>41.59±0.40</td>
<td>5.736±0.40</td>
</tr>
<tr>
<td>Ca</td>
<td>g</td>
<td>177.8±0.8</td>
<td>154.887±0.004</td>
<td>6.197±0.000</td>
</tr>
<tr>
<td>Ca+2</td>
<td>aq</td>
<td>-543.0±1.0</td>
<td>-56.2±1.0</td>
<td>6.75±0.000</td>
</tr>
<tr>
<td>CaO</td>
<td>cr</td>
<td>-634.92±0.90</td>
<td>38.1±0.4</td>
<td>6.247±0.000</td>
</tr>
<tr>
<td>Cd</td>
<td>cr</td>
<td>0</td>
<td>51.80±0.15</td>
<td>6.197±0.001</td>
</tr>
<tr>
<td>Cd</td>
<td>g</td>
<td>111.80±0.20</td>
<td>167.749±0.004</td>
<td>6.197±0.001</td>
</tr>
<tr>
<td>Cd+2</td>
<td>aq</td>
<td>-75.92±0.60</td>
<td>-72.8±1.5</td>
<td>6.197±0.001</td>
</tr>
<tr>
<td>CdO</td>
<td>cr</td>
<td>-258.35±0.40</td>
<td>54.8±1.5</td>
<td>8.41±0.000</td>
</tr>
<tr>
<td>CdSO4/3H2O</td>
<td>cr</td>
<td>-1729.30±0.80</td>
<td>229.65±0.40</td>
<td>35.56±0.000</td>
</tr>
<tr>
<td>Cl</td>
<td>g</td>
<td>121.301±0.008</td>
<td>6.197±0.001</td>
<td>6.272±0.000</td>
</tr>
<tr>
<td>Cl-</td>
<td>aq</td>
<td>-167.080±0.10</td>
<td>56.60±0.20</td>
<td>6.197±0.001</td>
</tr>
<tr>
<td>ClO4-</td>
<td>aq</td>
<td>-128.10±0.40</td>
<td>184.0±1.5</td>
<td>9.181±0.000</td>
</tr>
<tr>
<td>Cl2</td>
<td>g</td>
<td>0</td>
<td>223.081±0.010</td>
<td>7.711±0.000</td>
</tr>
<tr>
<td>Cs</td>
<td>cr</td>
<td>0</td>
<td>85.23±0.40</td>
<td>6.197±0.001</td>
</tr>
<tr>
<td>Cs</td>
<td>g</td>
<td>76.5±1.0</td>
<td>175.601±0.003</td>
<td>6.197±0.001</td>
</tr>
<tr>
<td>Cs+</td>
<td>aq</td>
<td>-258.00±0.50</td>
<td>132.1±0.5</td>
<td>5.004±0.000</td>
</tr>
<tr>
<td>Cu</td>
<td>cr</td>
<td>0</td>
<td>33.15±0.08</td>
<td>6.197±0.001</td>
</tr>
<tr>
<td>Cu</td>
<td>g</td>
<td>337.4±1.2</td>
<td>166.398±0.004</td>
<td>6.197±0.001</td>
</tr>
<tr>
<td>Cu+2</td>
<td>aq</td>
<td>64.9±1.0</td>
<td>-98±4</td>
<td>8.825±0.000</td>
</tr>
<tr>
<td>CuSO4</td>
<td>cr</td>
<td>-771.4±1.2</td>
<td>109.2±0.4</td>
<td>6.518±0.000</td>
</tr>
<tr>
<td>F</td>
<td>g</td>
<td>79.38±0.30</td>
<td>158.751±0.004</td>
<td>16.86±0.000</td>
</tr>
<tr>
<td>F-</td>
<td>aq</td>
<td>-335.35±0.65</td>
<td>-13.8±0.8</td>
<td>4.636±0.000</td>
</tr>
<tr>
<td>F2</td>
<td>g</td>
<td>0</td>
<td>202.791±0.005</td>
<td>7.398±0.000</td>
</tr>
<tr>
<td>Ge</td>
<td>cr</td>
<td>0</td>
<td>31.09±0.15</td>
<td>17.29±0.000</td>
</tr>
<tr>
<td>Ge</td>
<td>g</td>
<td>372±3</td>
<td>167.904±0.005</td>
<td>8.657±0.000</td>
</tr>
<tr>
<td>GeF4</td>
<td>g</td>
<td>-1190.20±0.50</td>
<td>301.9±1.0</td>
<td>8.657±0.000</td>
</tr>
<tr>
<td>GeO2</td>
<td>cr,tetragonal</td>
<td>-580.0±1.0</td>
<td>301.9±1.0</td>
<td>8.657±0.000</td>
</tr>
<tr>
<td>H</td>
<td>g</td>
<td>217.998±0.006</td>
<td>114.717±0.002</td>
<td>6.197±0.001</td>
</tr>
<tr>
<td>H+</td>
<td>aq</td>
<td>0</td>
<td>0</td>
<td>6.197±0.001</td>
</tr>
<tr>
<td>HBr</td>
<td>g</td>
<td>-36.29±0.16</td>
<td>198.700±0.004</td>
<td>8.648±0.000</td>
</tr>
<tr>
<td>HCO3-</td>
<td>aq</td>
<td>-689.93±2.0</td>
<td>98.4±0.5</td>
<td>8.648±0.000</td>
</tr>
<tr>
<td>HCl</td>
<td>g</td>
<td>-92.31±0.10</td>
<td>186.902±0.005</td>
<td>8.640±0.000</td>
</tr>
<tr>
<td>HF</td>
<td>g</td>
<td>-273.30±0.70</td>
<td>173.779±0.003</td>
<td>8.599±0.000</td>
</tr>
<tr>
<td>HI</td>
<td>g</td>
<td>26.50±0.10</td>
<td>206.590±0.004</td>
<td>8.657±0.000</td>
</tr>
<tr>
<td>HPO4-2</td>
<td>aq</td>
<td>-1299.0±1.5</td>
<td>-33.5±1.5</td>
<td>6.197±0.001</td>
</tr>
<tr>
<td>HS-</td>
<td>aq</td>
<td>-16.3±1.5</td>
<td>67±5</td>
<td></td>
</tr>
<tr>
<td>HSO4-</td>
<td>aq</td>
<td>-886.9±1.0</td>
<td>131.7±3.0</td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>g</td>
<td>0</td>
<td>130.680±0.003</td>
<td>8.468±0.000</td>
</tr>
<tr>
<td>H2O</td>
<td>l</td>
<td>-285.830±0.040</td>
<td>69.95±0.03</td>
<td>13.273±0.000</td>
</tr>
<tr>
<td>H2O</td>
<td>g</td>
<td>-241.826±0.040</td>
<td>188.835±0.010</td>
<td>9.905±0.000</td>
</tr>
<tr>
<td>H2PO4-</td>
<td>aq</td>
<td>-1302.6±1.5</td>
<td>92.5±1.5</td>
<td>9.957±0.000</td>
</tr>
<tr>
<td>H2S</td>
<td>g</td>
<td>-20.6±0.5</td>
<td>205.81±0.05</td>
<td>9.957±0.000</td>
</tr>
<tr>
<td>H2S</td>
<td>aq,undissoc.</td>
<td>-38.6±1.5</td>
<td>126±5</td>
<td>9.957±0.000</td>
</tr>
<tr>
<td>H3BO3</td>
<td>cr</td>
<td>-1094.8±0.8</td>
<td>89.95±0.60</td>
<td>13.52±0.000</td>
</tr>
<tr>
<td>H3BO3</td>
<td>aq,undissoc.</td>
<td>-1072.8±0.8</td>
<td>162.4±0.6</td>
<td>6.197±0.001</td>
</tr>
<tr>
<td>He</td>
<td>g</td>
<td>0</td>
<td>126.153±0.002</td>
<td>6.197±0.001</td>
</tr>
<tr>
<td>Element</td>
<td>Form</td>
<td>State</td>
<td>ΔH (kJ/mol)</td>
<td>ΔS (J/(mol·K))</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>-------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Hg</td>
<td>l</td>
<td>0</td>
<td>75.90±0.12</td>
<td>9.342±0.40</td>
</tr>
<tr>
<td>Hg</td>
<td>g</td>
<td>61.38±0.04</td>
<td>174.971±0.005</td>
<td>6.197±0.04</td>
</tr>
<tr>
<td>Hg+2</td>
<td>aq</td>
<td>170.21±0.20</td>
<td>-36.19±0.80</td>
<td>23.35±0.05</td>
</tr>
<tr>
<td>HgO</td>
<td>cr,red</td>
<td>-90.79±0.12</td>
<td>70.25±0.30</td>
<td>9.117±0.025</td>
</tr>
<tr>
<td>Hg2+2</td>
<td>aq</td>
<td>166.87±0.50</td>
<td>65.74±0.80</td>
<td>6.197±0.04</td>
</tr>
<tr>
<td>Hg2Cl2</td>
<td>cr</td>
<td>-265.37±0.40</td>
<td>191.6±0.8</td>
<td>26.070±0.005</td>
</tr>
<tr>
<td>Hg2SO4</td>
<td>cr</td>
<td>-743.09±0.40</td>
<td>200.70±0.20</td>
<td>6.197±0.04</td>
</tr>
<tr>
<td>I</td>
<td>g</td>
<td>106.76±0.04</td>
<td>180.787±0.004</td>
<td>6.197±0.04</td>
</tr>
<tr>
<td>I-</td>
<td>aq</td>
<td>-56.78±0.05</td>
<td>106.45±0.30</td>
<td>13.196±0.005</td>
</tr>
<tr>
<td>I2</td>
<td>cr</td>
<td>0</td>
<td>116.14±0.30</td>
<td>10.116±0.005</td>
</tr>
<tr>
<td>I2</td>
<td>g</td>
<td>62.42±0.08</td>
<td>260.687±0.005</td>
<td>10.116±0.005</td>
</tr>
<tr>
<td>K</td>
<td>cr</td>
<td>0</td>
<td>64.68±0.20</td>
<td>7.088±0.005</td>
</tr>
<tr>
<td>K</td>
<td>g</td>
<td>89.0±0.8</td>
<td>160.341±0.003</td>
<td>6.197±0.04</td>
</tr>
<tr>
<td>K+</td>
<td>aq</td>
<td>-252.14±0.08</td>
<td>101.2±0.20</td>
<td>6.197±0.04</td>
</tr>
<tr>
<td>Kr</td>
<td>cr</td>
<td>0</td>
<td>29.12±0.20</td>
<td>4.632±0.005</td>
</tr>
<tr>
<td>Li</td>
<td>cr</td>
<td>0</td>
<td>159.3±1.0</td>
<td>6.197±0.04</td>
</tr>
<tr>
<td>Li</td>
<td>g</td>
<td>159.3±1.0</td>
<td>138.782±0.001</td>
<td>6.197±0.04</td>
</tr>
<tr>
<td>Li+</td>
<td>aq</td>
<td>-278.47±0.08</td>
<td>12.24±0.15</td>
<td>4.998±0.005</td>
</tr>
<tr>
<td>Mg</td>
<td>cr</td>
<td>0</td>
<td>32.67±0.10</td>
<td>6.197±0.04</td>
</tr>
<tr>
<td>Mg</td>
<td>g</td>
<td>147.1±0.8</td>
<td>148.648±0.003</td>
<td>6.197±0.04</td>
</tr>
<tr>
<td>Mg+2</td>
<td>aq</td>
<td>-467.0±0.6</td>
<td>-137±4</td>
<td>9.91±0.005</td>
</tr>
<tr>
<td>MgF2</td>
<td>cr</td>
<td>-1124.2±1.2</td>
<td>57.2±0.5</td>
<td>5.160±0.005</td>
</tr>
<tr>
<td>MgO</td>
<td>cr</td>
<td>-601.6±0.30</td>
<td>26.95±0.15</td>
<td>6.197±0.04</td>
</tr>
<tr>
<td>N</td>
<td>g</td>
<td>472.68±0.40</td>
<td>153.301±0.003</td>
<td>6.197±0.04</td>
</tr>
<tr>
<td>NH3</td>
<td>g</td>
<td>-45.94±0.35</td>
<td>192.77±0.005</td>
<td>10.043±0.005</td>
</tr>
<tr>
<td>NO3-</td>
<td>aq</td>
<td>-133.26±0.25</td>
<td>111.17±0.40</td>
<td>6.197±0.04</td>
</tr>
<tr>
<td>NO3-</td>
<td>aq</td>
<td>-206.85±0.40</td>
<td>146.70±0.40</td>
<td>6.197±0.04</td>
</tr>
<tr>
<td>N2</td>
<td>g</td>
<td>0</td>
<td>191.609±0.004</td>
<td>8.670±0.005</td>
</tr>
<tr>
<td>Na</td>
<td>cr</td>
<td>0</td>
<td>51.30±0.20</td>
<td>6.460±0.005</td>
</tr>
<tr>
<td>Na</td>
<td>g</td>
<td>107.5±0.7</td>
<td>153.718±0.003</td>
<td>6.197±0.04</td>
</tr>
<tr>
<td>Na+</td>
<td>aq</td>
<td>-240.34±0.06</td>
<td>58.45±0.15</td>
<td>6.197±0.04</td>
</tr>
<tr>
<td>Ne</td>
<td>g</td>
<td>0</td>
<td>146.328±0.003</td>
<td>6.197±0.04</td>
</tr>
<tr>
<td>O</td>
<td>g</td>
<td>249.18±0.10</td>
<td>161.059±0.003</td>
<td>6.725±0.005</td>
</tr>
<tr>
<td>OH-</td>
<td>aq</td>
<td>-230.015±0.040</td>
<td>-10.90±0.20</td>
<td>6.725±0.005</td>
</tr>
<tr>
<td>O2</td>
<td>g</td>
<td>0</td>
<td>205.152±0.005</td>
<td>8.680±0.005</td>
</tr>
<tr>
<td>P</td>
<td>cr,white</td>
<td>0</td>
<td>41.09±0.25</td>
<td>5.360±0.005</td>
</tr>
<tr>
<td>P</td>
<td>g</td>
<td>316.5±1.0</td>
<td>163.199±0.003</td>
<td>6.197±0.04</td>
</tr>
<tr>
<td>P2</td>
<td>g</td>
<td>144.0±2.0</td>
<td>218.123±0.004</td>
<td>8.904±0.005</td>
</tr>
<tr>
<td>P4</td>
<td>g</td>
<td>58.9±0.3</td>
<td>280.01±0.50</td>
<td>14.10±0.005</td>
</tr>
<tr>
<td>Pb</td>
<td>cr</td>
<td>0</td>
<td>64.80±0.30</td>
<td>6.870±0.005</td>
</tr>
<tr>
<td>Pb</td>
<td>g</td>
<td>195.2±0.8</td>
<td>175.375±0.005</td>
<td>6.197±0.04</td>
</tr>
<tr>
<td>Pb+2</td>
<td>aq</td>
<td>0.92±0.25</td>
<td>18.5±1.0</td>
<td>20.050±0.005</td>
</tr>
<tr>
<td>PbSO4</td>
<td>cr</td>
<td>-919.97±0.40</td>
<td>148.50±0.60</td>
<td>7.489±0.005</td>
</tr>
<tr>
<td>Rb</td>
<td>cr</td>
<td>0</td>
<td>76.78±0.30</td>
<td>6.197±0.04</td>
</tr>
<tr>
<td>Rb</td>
<td>g</td>
<td>80.9±0.8</td>
<td>170.09±0.003</td>
<td>6.197±0.04</td>
</tr>
<tr>
<td>Rb+</td>
<td>aq</td>
<td>-251.12±0.10</td>
<td>121.75±0.25</td>
<td>6.197±0.04</td>
</tr>
</tbody>
</table>
CODATA Key Values for Thermodynamics

<table>
<thead>
<tr>
<th>Substance</th>
<th>Phase</th>
<th>Temperature</th>
<th>Enthalpy</th>
<th>Entropy</th>
<th>Gibbs Free Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>cr,rhombic</td>
<td>0</td>
<td>32.054±0.050</td>
<td>4.412±0.050</td>
<td>37.466±0.050</td>
</tr>
<tr>
<td>S</td>
<td>g</td>
<td>277.17±0.15</td>
<td>167.829±0.006</td>
<td>6.657±0.050</td>
<td>174.486±0.006</td>
</tr>
<tr>
<td>SO₂</td>
<td>g</td>
<td>-296.81±0.20</td>
<td>248.223±0.050</td>
<td>10.549±0.050</td>
<td>268.772±0.050</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>aq</td>
<td>-909.34±0.40</td>
<td>18.50±0.40</td>
<td>9.132±0.050</td>
<td>-927.84±0.40</td>
</tr>
<tr>
<td>S₂</td>
<td>g</td>
<td>128.60±0.30</td>
<td>228.167±0.010</td>
<td>9.132±0.050</td>
<td>247.307±0.010</td>
</tr>
<tr>
<td>Si</td>
<td>cr</td>
<td>0</td>
<td>18.81±0.08</td>
<td>3.217±0.050</td>
<td>22.027±0.08</td>
</tr>
<tr>
<td>Si</td>
<td>g</td>
<td>450±8</td>
<td>167.981±0.004</td>
<td>7.550±0.050</td>
<td>175.531±0.004</td>
</tr>
<tr>
<td>SiF₄</td>
<td>g</td>
<td>-1615.0±0.8</td>
<td>282.76±0.50</td>
<td>15.36±0.050</td>
<td>308.12±0.50</td>
</tr>
<tr>
<td>SiO₂</td>
<td>cr,alphaquartz</td>
<td>-910.7±1.0</td>
<td>41.46±0.20</td>
<td>6.916±0.050</td>
<td>-569.24±1.0</td>
</tr>
<tr>
<td>Sn</td>
<td>cr,white</td>
<td>0</td>
<td>51.18±0.08</td>
<td>6.323±0.050</td>
<td>57.503±0.08</td>
</tr>
<tr>
<td>Sn</td>
<td>g</td>
<td>301.2±1.5</td>
<td>168.492±0.004</td>
<td>6.215±0.050</td>
<td>184.784±1.5</td>
</tr>
<tr>
<td>Sn⁺²</td>
<td>aq</td>
<td>-8.9±1.0</td>
<td>-16.7±4.0</td>
<td>8.736±0.050</td>
<td>-25.6±1.0</td>
</tr>
<tr>
<td>SnO</td>
<td>cr,tetragonal</td>
<td>-280.71±0.20</td>
<td>57.17±0.30</td>
<td>8.384±0.050</td>
<td>-337.88±0.20</td>
</tr>
<tr>
<td>SnO₂</td>
<td>cr,tetragonal</td>
<td>-577.63±0.20</td>
<td>49.04±0.10</td>
<td>8.384±0.050</td>
<td>-635.67±0.20</td>
</tr>
<tr>
<td>Th</td>
<td>cr</td>
<td>0</td>
<td>51.8±0.5</td>
<td>6.35±0.050</td>
<td>58.15±0.5</td>
</tr>
<tr>
<td>Th</td>
<td>g</td>
<td>602±6</td>
<td>190.17±0.05</td>
<td>6.197±0.050</td>
<td>256.34±6</td>
</tr>
<tr>
<td>ThO₂</td>
<td>cr</td>
<td>-1226.4±3.5</td>
<td>65.23±0.20</td>
<td>10.560±0.20</td>
<td>-1321.65±3.5</td>
</tr>
<tr>
<td>Ti</td>
<td>cr</td>
<td>0</td>
<td>30.72±0.10</td>
<td>4.824±0.050</td>
<td>35.54±0.10</td>
</tr>
<tr>
<td>Ti</td>
<td>g</td>
<td>473±3</td>
<td>180.298±0.010</td>
<td>7.539±0.050</td>
<td>227.593±3</td>
</tr>
<tr>
<td>TiCl₄</td>
<td>g</td>
<td>-763.2±3.0</td>
<td>353.2±4.0</td>
<td>21.5±0.050</td>
<td>-1116.4±3.0</td>
</tr>
<tr>
<td>TiO₂</td>
<td>cr,rutile</td>
<td>-944.0±0.8</td>
<td>50.6±0.30</td>
<td>8.6±0.050</td>
<td>-1034.8±0.8</td>
</tr>
<tr>
<td>U</td>
<td>cr</td>
<td>0</td>
<td>50.20±0.20</td>
<td>6.364±0.050</td>
<td>56.564±0.20</td>
</tr>
<tr>
<td>U</td>
<td>g</td>
<td>533±8</td>
<td>199.79±0.10</td>
<td>6.499±0.050</td>
<td>259.57±8</td>
</tr>
<tr>
<td>UO₂</td>
<td>cr</td>
<td>-1085.0±1.0</td>
<td>77.03±0.20</td>
<td>11.280±0.20</td>
<td>-1162.0±1.0</td>
</tr>
<tr>
<td>UO₂⁺²</td>
<td>aq</td>
<td>-1019.0±1.5</td>
<td>-98.2±3.0</td>
<td>14.585±0.20</td>
<td>-1227.2±1.5</td>
</tr>
<tr>
<td>UO₃</td>
<td>cr,gamma</td>
<td>-1253.8±1.2</td>
<td>96.11±0.40</td>
<td>14.585±0.20</td>
<td>-1380.6±1.2</td>
</tr>
<tr>
<td>U₃O₈</td>
<td>cr</td>
<td>-3574.8±2.5</td>
<td>282.55±0.50</td>
<td>42.74±0.050</td>
<td>-3937.3±2.5</td>
</tr>
<tr>
<td>Xe</td>
<td>g</td>
<td>0</td>
<td>169.685±0.003</td>
<td>6.197±0.050</td>
<td>186.365±0.003</td>
</tr>
<tr>
<td>Zn</td>
<td>cr</td>
<td>0</td>
<td>41.63±0.15</td>
<td>5.657±0.050</td>
<td>47.287±0.15</td>
</tr>
<tr>
<td>Zn</td>
<td>g</td>
<td>130.40±0.40</td>
<td>160.990±0.004</td>
<td>6.197±0.050</td>
<td>174.480±0.40</td>
</tr>
<tr>
<td>Zn⁺²</td>
<td>aq</td>
<td>-153.39±0.20</td>
<td>-109.8±0.5</td>
<td>6.933±0.050</td>
<td>-263.28±0.20</td>
</tr>
<tr>
<td>ZnO</td>
<td>cr</td>
<td>-350.46±0.27</td>
<td>43.65±0.40</td>
<td>6.933±0.050</td>
<td>-394.11±0.27</td>
</tr>
</tbody>
</table>

REFERENCE

The values given in this table represent the consensus judgement of an international group of experts. While we believe there is a high probability that the true values fall within the stated uncertainty limits, CODATA cannot assume responsibility for any consequences of the use of these data.

(Note: All the numerical values have precisions stated alongside them. Browsers using HTML3.2 will show a ± symbol. Earlier versions will only show a space or possibly some code.)